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O N E - D I M E N S I O N A L  S T A T I S T I C A L  M O D E L  O F  

A C T I V E  T R A N S F E R  O F  S U B S T A N C E S  I N  M E M B R A N E S  

A. V. Melkikh and V. D. Seleznev UDC 536.75:577.3 

A matrix of  kinetic coefficients that describe the processes of particle and heat transfer in a double membrane 

is obtained. The kinetic coefficients are considered as functions of the membrane parameters. Conditions 

are found  under which the energy expended on transfer of one atom through the membrane is minimum. 

The obtained theoretical value of this energy is compared with the corresponding value for active transport 

of ions in biomembranes. 

Membrane methods of separation and purification of substances find increasingly widespread application 

owing to their simplicity, economy, and low energy and material requirements [1 ]. Further development of this 

field of technology is hampered in many respects because of insufficient insight into the mechanisms of transfer of 

substances in membranes. Data on the mechanisms and technological application of the effects associated with heat 

fluxes are particularly incomplete. Investigation of the way membranes of living organisms function gives an idea 

of the great potentialities of energy flows [2 ]. Biological membranes, owing to liberation of the energy of metabolic 

processes, may act as pumps that create concentration drops for some ions. However, practical application of such 

effects is hindered by a lack of theoretical models of active transfer that take direct account of the energy sources 

and heat fluxes. 

The present work proposes a simple theoretical model of the transfer of molecules or ions in a monolithic 

double solid membrane in the presence of a stationary heat source in the plane of contact of the layers. The model 

enables us to understand some features of active transfer of substances through membranes and to find the energy 

of the source required for transferring one particle. 

We consider an infinite double membrane of thickness L that separates mixtures of gases or liquids (for 

example, solutions) with temperatures T 1 and T2 and numerical densities of components nil and ni2, respectively 

(Fig. 1). We place a stationary heat source with a surface power density W in the plane x = L1 < L. 

We will assume that the concentration of all the components of the liquid (gas) in the membrane material 

is so small that molecules or ions do not affect one another when transferred through it. This enables us to find 

the velocities of different components independently. Therefore, in the subsequent discussion we will consider the 

transfer of one component and will omit the subscript i. 

For simplicity we will assume that the potential energy of the interaction of the membrane with the particles, 

averaged over thermal fluctuations, can be represented as shown in Fig. 2. 

The energy U is reckoned from the level of the energy of the interaction of a particle with the solution. We 

ignore adsorption effects on the membrane surfaces. 

We calculate particle and energy transfer between two neighboring potential wells on the basis of the 

assumption that the time spent by a particle in a well is much greater than the time taken by it to reach equilibrium 

with membrane molecules after the next jump. In this case for the densities of the particle and heat fluxes through 
an arbitrary barrier with the coordinate x we can write 

1 ( 
I (x) = -~ n (x) v t (x) exp kT  (x) n (x) T (x) 2 + ~ ' (1) 
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Fig. 1. Double membrane  with a heat source. 

Fig. 2. Profile of the particle potential energy in a double membrane.  
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q (x) = ~ n (x) v t (x) exp kT (x----~ n (x) + E (x) 

ATb [ 9 ( E (x) ) ] } - 2 ATb 
T (x) -4 kT (x) + E (x) 1 + kT (x----~ ---3--" (2) 

where Anb and AT b are the difference in the densities and temperatures  in neighboring potential wells near  the 

barr ier  in question; ,~ is the thermal conductivity coefficient of the membrane  material; c~ is the lattice spacing; v t 
is the thermal  velocity of particles of the t ransfer red  component;  E(x) = E1 for  0 < x < L1, E(x) = E2 for  

LI < X < L .  
Equations for I(x) and q(x) are introduced using the Maxwell distribution function for the particles in each 

well, and the densities of the counterflows (from the left well to the right one and vice versa) are calculated from 

the following formulas: 

11__, r = ~ nlVtl exp - , lr._, l = -~ nrVtr exp - 

q~_,~ = ~ n y a e x  p - ~ /  - - f -  + E , 

, (3) 

(3) 

qr t = nrV. exp -- + e 

In going f rom (3) to (1) and  (2) we a s s u m e  tha t  the  t e m p e r a t u r e  d rop  on the lat t ice spac ing  is small:  

ATb/T  << 1. 

We now assume that  the differences in the particle densities and temperatures  on both sides of the 

membrane  are small, i.e., 

AT T 1 - T 2 An n 1 - n 2 T 1 + T 2 n 1 + n 2 
- - - < < 1 ,  - - - = - - < < 1 ,  T - - -  ~ - - -  ~ ~ ~ 2 ' 2 

and the heat  source is limited to such an extent that temperature  drops inside the membrane  comparable with the 

average temperature  T cannot be created. In this case we should expect that  the distribution of the densi ty n and  

temperature  T over the membrane  thickness will be piecewise linear, as shown in Fig. 3. 

The  linearity of the distributions T(x) and n(x) in homogeneous parts of the membrane  follows from the 

fact that  in the stat ionary case the heat and particle fluxes are the same in every cross section of each part  of the 

membrane .  
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Fig. 3. Particle concentration and membrane temperature vs coordinate. 

The drops in density Anb and temperature ATb in neighboring potential wells will be the same within the 

homogeneous parts of the membrane and they change abruptly in going through the plane of contact: 

Anbl n s -- n I Anb2 n2 - n s ATbl T s - T 1 ATb2 T 2 - T s 

~ =  L 1 ' ~ =  L - L  1 ' ~ =  L 1 ' - - ~ - =  L - L  1 

With a prescribed heat source power density W we can find the unknown values of the density ns and 

temperature Ts from the balance equations for the number of particles and the energy in the potential well with 

the coordinate x -- LI: 

tc 1 ~o+ +~-~ Z =to2 --n - ~ ~  

) E9- ( 
tel 50 - - + E l  + Z -~ k T  + E1 1 + - -~  

m )( )l - - - ~ o  - - + E  2 + - - -  
=/r n 2 T 

-T - - z  ~ + ~  i' 

+ W+.~IZ~-I +)]. 2 Z - L 1  

(4) 

rl I -- n 2 . 
9 ' = -  , Z - - -  _ , x i = ~ - n v  t e x p  - -  - ;  l i = - .  

T k T  l i 

The system of algebraic equations (4L enables us to find ~o and Z and, consequently, Anbl , Anb2, ATbl, 

and ATb2 , and after substituting the latter into (1) and (2) we can easily obtain the following expressions for the 

fluxes of heat and the number of particles: 

q$ 

W 

= Lik 

A n  
k 

-E 

A T  

T 2 

T s - T  

~2 

where 

q$ ~ m ql + q 2 .  
Lik = 

Lnn Lnq Lnw 

Lqn Lqq Lqq 

Lwn Lwq Lww 
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is the matrix of kinetic coefficients, similar to that described in [3 ]. 

We express the kinetic coefficients in terms of the parameters of the model as follows: 

Xltr 2 1 
L n n -  ~l + ~2 k ' 

(5) 

(6) 

~lX2 E2 - E l 
Lnw = Lwn - tel + to2 T k--T-  

(7) 

"" f Lqq = + L -  L------~ "4-+~:1 +-------~ T "~ k r  + -~- 1 +  ' (8) 

T 
Lwq = Lqw = -~ 

'~'2 ~1 ) / ( : 1 / ( : 2  { (1  E1 + E 2 )  (/r /r } 
L - L 1 L 1 + tr 1 + x'------~ T (E2 - El) 2 + 2k-----~ + kT tc 1 tr 2 , 

(9) 

Lww = + L - L-----~ T -t ~ l q- K-------~ T 2 k T --~1+ -~2 + 4 k T +  ~-7 r . 

The diagonal kinetic coefficients Lnn and Lqq describe the permeability of the double membrane to particles 
(Lnn) and heat (Lqq) due to thermodynamic forces conjugate to these fluxes, and the coefficient Lww is associated 

with the rate of source heat removal on both sides of the membrane due to the temperature drop (Ts - T ) / T  z. 

The cross coefficients Lnq and Lqn correspond to the well-known phenomena of thermal creep and 

mechanocaloric heat transfer [4 ] for double membranes. In the case W = 0 a thermomolecular difference in the 
densities of the component in question that can be found from the condition I = 0 will be created in the closed 

system of two volumes joined by a membrane and having a maintained temperature difference. Based on this 

condition we can easily obtain from expressions (5) and (6) that 

An L n q A T  ( 1 E I + E 2 ) A T  (11) 
- -  _ _  - -  _ - 1 -  - -  

n Lnn kT2 I ) 2  2kT T 

Taking into account that for an ideal gas 

An Ap AT (12) 
n p T '  

we can calculate from expression (11) the index of the thermomolecular pressure difference (t.p.d.) for rarefied 

gases: 

Ap/p  1 E1 + E2 (13) 
7 -  A T ~ T -  2 2kT 

It is pertinent to note that in the case of a homogeneous membrane (El -- E2) the t.p.d, index (13) coincides 

with the result of [5 ]. 
The cross effect described by the coefficient Lnw corresponds to the flux of the number of particles through 

an asymmetric double membrane due to the temperature drop (Ts - T ) / T  2. In rarefied gas motion in a composite 
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channel a similar effect (that of accommodation pumping) was found and investigated in the works of Hobson and 

Edmonds [6, 7 ]. The analog of this effect in conductors with an electric current can be called the Seebeck 

phenomenon [4 ]. A common feature of the above effects is the fact that opposing temperature gradients in different 

parts of heterogeneous membranes (conductors) induce particle fluxes (electric currents) that differ in magnitude 

and are opposite in direction. The resultant particle flux (electric current) manifests itself in the pressure (potential) 

difference created. The corresponding resultant fluxes become zero as the characteristics of the unlike parts of the 

membrane converge. Consequently, the cross coefficients that describe these phenomena should be proportional to 

the differences in the parameters that characterize the transfer of the component in question in the unlike parts of 

the system. The diffusion activation energy Ei is such a characteristic for the theoretical model proposed, and 

therefore Lnw N (E 2 - El). The difference structure of the expressions for the kinetic coefficient in question 

predetermines a change in direction for the particle flux upon interchange of the homogeneous parts of the 

membrane. 

Thus, by maintaining a nonuniform temperature field in an asymmetric membrane with a maximum 

(minimum) at the contact we can induce a pump effect whose magnitude can be easily found from the condition I 

= 0 a t A T = 0 i n  (5): 

An Lnw :r s - _ - 7 "  s - ( 1 4 )  

n Lnn kT 2 kT "T 

As evident from (14), for Ts > T the particle density will be larger on the side of the membrane where the diffusion 

activation energy is larger. This is explained by the fact that the thermal creep directed from the contact is larger 

in magnitude for the part of the membrane that is characterized by the activation energy E2. 

According to (14) the relative density difference A n / n  (the pump effect) can attain values of the order of 

unity; particularly large effects are to be expected at low temperatures ((E2 - E 1 ) / k T  >> 1). It is pertinent to note 

that the effect of accommodation pumping [8 ] for (T s - T ) / T - 1  can hardly exceed the difference in the 

accommodation coefficients for tangential momentum (~1 - a 2 )  on different parts of a composite channel 

( A n / n  < (al - a2) <~ 0.1). Therefore, to ensure the maximum pump effect, we need to change from the channels 

with a large diameter of - 2  cm that were used in [8] to a set of parallel small-radius channels in which surface 

diffusion of gas atoms with the activation energies E1 and Ez will be the main mechanism for transferring them. 

The kinetic coefficient Lwn (equal to Lnw) describes heat liberation (absorption) at the interface of the 

dissimilar parts of an asymmetric membrane due to the particle flux through the membrane resulting from the 

density drop An/n .  This effect is analogous to the Peltier effect in conductors of dissimilar materials. The 

corresponding effect for rarefied gases in the component parts of a channel is described in [3 ]. The main reason 

for these phenomena is the difference in the mechanocaloric heat fluxes in the dissimilar parts of the asymmetric 

membrane (conductors). The relative temperature difference at the channel interface in [3 ] is no more than 

10 -3, as a rule; the heat fluxes are also very small by virtue of the gas rarefaction, which narrows the field of 

possible application of the gas analog of the Peltier effect in channels. However, by going over to a set of small 

channels that provides a transfer regime in which surface diffusion will be the prevailing mechanism the magnitude 

of the effect can be increased significantly. By using explicit expressions for the kinetic coefficients Lwn and Lnw 

we can easily obtain that the heat liberation in the contact region per particle will be E 2 - E  1. 

The kinetic coefficient Lqw characterizes the phenomenon of heat removal from the contact of the dissimilar 

parts of a composite membrane, which concerns the difference in the magnitudes of the heat fluxes ( I q21 - I ql I ) 
that is induced by the temperature drop (T s - ~r)/T 2. The magnitudes I ql I and I q21 will differ only for asymmetric 

membranes, and therefore the coefficient Lqw should have a difference character, which is confirmed by the form 
of expression (9). 

If a constant temperature difference is maintained at the ends of a composite membrane with a linear 
temperature distribution over the membrane thickness, the heat fluxes in the dissimilar parts of the membrane will 

coincide in direction but their magnitude will be different because of the difference in the transfer parameters. As 

a result, the temperature drop AT = T 1 - T 2 will lead to heat liberation at the contact that is equal to I q21 - I cll I 
and is characterized by the coefficient Lwq. 

205 



It is noteworthy that the matrix of kinetic coefficients Lik obtained is symmetric, i.e., the Onsager reciprocal 

relation 

Lik = Lk i .  

holds for these coefficients. 

We now consider the effect of active particle transfer under the action of a steady heat source W. We will 

assume that A n / n  = A T / T  = 0, and therefore, according to (5), the temperature drop 

T s - T = ~ W  (15) 

~2 Lw w 

will be established in the membrane. 

This drop, according to (5), creates the flux of the number of particles (the pump effect) 

Ts - Lnw 
I = L n w  ~ -  - -  W .  

T 2 Lww 

(16) 

Based on (7) we can easily find the energy e required to transfer one particle through the membrane: 

E 

/~1 r2 ' ~ (E2 - El)  /el + n:2 
2 + 2  + 4  ) k T +  + - -  

W Lww -~2 -~1 k T  tr162 2 

I - Lnw E I - E 2 

;l 22 ) 
+ L - L I ~  (17) 

To simplify, we denote E i / k T  =- E i, E l - E 2  --- A, x = L 1 / ( L - L 1  ), and then 

1 { -1 A 2 /r162 )11 2 2 ) 1  (18) 2e-Ax +2eAx+4+ + 

As is evident from (18), the value of e is determined by the activation energy difference A = E1 - E2, the 

coordinate of the location of the heat source x = L 1 / ( L  - L1) ,  and the thermal conductivities 21 and 22 of both parts 

of the membrane. It is clear that the most efficient operation of this pump corresponds to the minimum value of e. 

We find the conditions under which the expenditure of energy on pumping will be the smallest. For this 

purpose we find the minimum of the function e = e (A, X, )ll, )12); e depends on )1i linearly, and )1i is greater than 

0. That is, to ensure the minimum of e, we need to decrease )1i to zero as far as possible (e --, emi n as )1i ~ 0). Thus, 

the heat flux over the membrane material is a parasitic process. To ensure a sufficiently high efficiency of pump 

operation, it is essential that the density of the flux of heat transferred by the particles of the penetrating component 

be at least a noticeable fraction of W. 
With respect to the other variables A --E1 - E2 and X-- (L 1 / ( L  - L1)) the function e (A, X) has a minimum 

determined from the conditions 

de 0e 0 (19) 
0A ~ 0 ,  0-~ = �9 

By taking the derivatives of(19)  and setting them equal to zero we obtain 

e rn in=2VrgkT,  E l - E 2 = d g  k T  , x = e x p ( - v r g ) .  

Thus, the minimum energy required to transfer one particle is 2x/-gkT provided that the thermal conductivity 

of the membrane material is negligibly small. The optimum difference in the activation energies equals v ~ k T ,  and 

the best location of the energy source is characterized by the parameter L t / ( L  - L1) = exp (-vrg).  
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As applied to biomembranes,  we can expect that the most energy-efficient mechanisms of operation of active 

transport were selected in the process of biological evolution. Then biomembrane ion pumps should have near- 

optimum characteristics. As a comparison shows, the value of emi n obtained is, indeed, in good agreement with 

experimental data for some membranes.  For example, energy equal to - 8kT is expended on transferring one Ca 2+ 

ion, in the CaZ+-pump of sarcoplasmatic reticulum cells [9 ]. We can assume that the difference between the 

experimental and theoretical values of energy transfer eex p - etheo r -- 2.5kT arises because J-i ~ 0. 

However ,  it is pe r t inen t  to note  that  there  are biological pumps (for example,  Na+-K+-adenosine  

triphosphatase) in which ~ 3.2kT is expended on transferring one ion [9 ], i.e., less than the minimum estimate of 

e obtained by us.  This suggests that some biological membranes have a structure and associated mechanisms of 

active transfer (for example, gate ones [10 ]) that enable them to expend the energy of metabolic processes more 

economically. To describe these mechanisms, more detailed theoretical models are needed. 

As a result of the steady action of active particle transfer when at least one of the volumes between which 

there is the membrane is limited, a constant density difference An st is established over time. The value of An st can 

be found from the condition of vanishing of the particle flux 1 due to the joint action of the mechanisms of active 

and passive transfer: 

An st T s - 

I = L n n k - -  + Lnw _ - O. (20) 
-~ T 2 

In view of (6) we can easily obtain from (20) that 

An st Lnw E 1 - E 2 W K 1 + lr 2 
- - - -  w - -  (21) 

- n Z n n L w w  k T x l x 2 2  ~2 + 2 ~-i + 4 + ( E 2 - E 1 )  2 x l t c 2 k - - 7 4  

For the optimum values of A = d g  and X = exp (x/-8-) we find 

An st 
- w 2 V a g  i _ 14/ _ W (22) 

8 + 8 /r 1r x/-8- /r V~- 

since xl --/r for optimum A and X. 

We est imate An s~ created by a biological pump. We take into account that the membrane  thickness 
O O 

L -  70 A, v t - 1 0 0  m/sec,  6 - 3  A. Furthermore,  we estimate the heat source density W, knowing the ATP decay 

energy Q -  16kT and the pump operating frequency v - 2 . 1 0 3  sec -3 [11 ]. By substituting these values into Eq. 

(22) we obtain that the observed drop An s~ - 0 . 1  mole/ l i ter  can be produced for E2 - 7 k T .  At the same time we 

should take into account that the model given in the present work is correct  only in the domain of linear 

thermodynamics  (in the case of smallness of all forces) and cannot be applied in full measure to biological 

membranes since A n / n -  1 in them. Thus,  the proposed theoretical model of particle t ransfer  in asymmetric 

membranes with different diffusion activation energies shows the fundamental importance of taking into account 

heat fluxes and energy liberation at the interface of the dissimilar parts of these membranes.  The cross coefficients 

obtained describe t ransfer  phenomena that are in qualitative agreement with those observed on membranes of cells 

of living organisms. The  cross effects described in the present work can be used in engineering practice, for example, 

to produce pumping devices, separators,  current  sources, etc. 

N O T A T I O N  

T1, T2, solution temperatures to the left and to the right of the membrane; nil , hi2 , numerical densities of 

particles of the i-th component to the left and to the fight of the membrane; x, current coordinate in the membrane; 

L1, coordinate of the heat source; L, membrane thickness; W, heat source power density; 6, distance between 
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neighboring potential wells; El, E2, diffusion activation energies in the left and right parts of the membrane; U, 
particle potential energy in the membrane; Anb, ATb, difference in the gas densities and temperatures in 
neighboring potential wells; k, Boltzmann constant; 21, A2, thermal conductivity coefficients in both parts of the 
membrane material; vt, thermal velocity of particles; I, particle flux density in the membrane; q, heat flux density 
in the membrane; Ts, ns, particle temperature and density at the contact of the parts of the membrane; T, ~, average 

temperature and density of particles in the membrane; qs, heat flux at the contact of the membrane layers; Lik, 

matrix of kinetic coefficients; p, gas pressure; 7, index of the thermomolecular pressure difference; al ,  a2, 
accommodation coefficients of the particle tangential momentum in the dissimilar parts of a composite channel; e, 

energy required to transfer one particle through the membrane. 
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